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Abstract. Since the proposal of big data analysis and Graphic Process-
ing Unit (GPU), the deep learning technology has received a great deal of
attention and has been widely applied in the field of imaging processing.
In this paper, we have an aim to completely review and summarize the
deep learning technologies for image denoising proposed in recent years.
Morever, we systematically analyze the conventional machine learning
methods for image denoising. Finally, we point out some research di-
rections for the deep learning technologies in image denoising. abstract
environment.
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1 Introduction

Image processing has numerous applications including image segmentation [28],
image classification [25,38,32,12], object detection [13], video tracking [36], im-
age restoration [48] and action recognition [35]. Especially, the image denoising
technology is one of the most important branches of image processing technolo-
gies and is used as an ex-ample to show the development of the image processing
technologies in last 20 years [42]. Buades et al. [5] proposed a non-local algorithm
method to deal with image denoising. Lan et al. [19] fused the belief propagation
inference method and Markov Random Fields (MRFs) to address image denois-
ing. Dabov et al. [9] proposed to transform grouping similar two-dimensional im-
age fragments into three-dimensional data arrays to improve sparisty for image
denoising. These selection and extraction methods have amazing performance for
image denoising. However, the conventional methods have two challenges [45].
First, these methods are non-convex, which need to manually set parameters.
Second, these methods refer a complex optimization problem for the test stage,
resulting in high computational cost.

In recent years, researches have shown that deep learning technologies can
reply to deeper architecture to automatically learn and find more suitable image
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features rather than manual setting parameters, which effectively address draw-
backs of traditional methods mentioned above [18]. Big data and GPU are also
essential for deep learning technologies to improve the learning ability [16]. The
learning ability of deep learning is finished by model (also referred to as network)
and the model consists of many layers, including the convolutional layer, pooling
layer, batch normalization layer and full connection layer. In other words, deep
learning technologies can convert input data (e.g. images, speech and video) into
outputs (e.g. object category, password unlocking and traffic information) by the
model [24]. Especially, convolutional neural network (CNN) is one of the most
typical and successful deep learning network for image processing [20]. CNN was
originated LeNet from 1998 and it was successfully used in hand-written digit
recognition, achieving excellent performance [21]. However, convolutional neural
networks (CNNs) havent been widely used in other real applications before the
arise of GPU and big data. In other words, the real success of CNNs attributed
to ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC 2012)
where new CNN was proposed, named AlexNet and became a world champion
in this ILSVRC 2012 [18,43].

In subsequent years, deeper neural networks have becoming popular and ob-
tain promising performance for image processing [29]. Karen Simonyan et al. [29]
in-creased the depth of neural networks to 16-19 weighted layers and convolution
filter size of each layer was 3 × 3 for image recognition. Christian Szegedy et
al. [30] provided a mechanism by using sparsely connected layer [2] instead of
fully connected layers to increase the width and depth of the neural networks for
image classification, named as Inception V1. Inception V1 effectively prevented
to overfitting from enlarged size (width) of network and reduced the computing
resource from increased depth of network. Previous researches show that the
deep networks essentially use an end-to-end multilayer fashion to fuse different
level fashion [17] and classifiers and the extracted features can be more robust
by increasing the number of depth in networks. Despite deep networks have
obtained successfully applications for image processing [27] , they can generate
vanishing gradient or exploding gradient [4] with increased network depth. That
makes network hamper convergence. This problem can be solved by normalized
initialization [39]. However, when deeper neural networks get to converge, net-
works are saturated and degrade quickly with increasing depth of networks. The
appearance of residual network effectively dealt with problems above for im-
age recognition [15]. ResNeXt method is tested to be very effectively for image
classification [40]. Spatial-temporal Attention (SPA) method is very competitive
for visual tracking [50]. Residual Dense Network (RDN) is also an effective tool
for image super-resolution [49]. Furthermore, DiracNets [44], IndRNN [23] and
varia-tional U-Net [11] also provide us with many competitive technologies for
image pro-cessing. These deep networks are also widely applied in image de-
noising, which is the branch of image processing technologies. For example, the
combination of kernel-prediction net and CNN is used to obtain denoised image
[3]. BMCNN utilizes NSS and CNN to deal with image denoising [1]. GAN is
used to remove noise from noisy image [33].
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Although the researches above expose that deep learning technologies have
ob-tained enormous success in the applications of image denoising, to own knowl-
edge, there is no comparative study of deep learning technologies for image
denoising. Deep learning technologies refer to properties of image denosing to
propose wise solution methods, which are embedded in multiple hidden layers
with end-end con-nection to better deal with them. Therefore, a survey is im-
portant and necessary to review the principles, performance, difference, merits,
shortcomings and technical potential for image processing. Deeper CNNs (e.g.
AlexNet, GoogLeNet, VGG and ResNet), which can show the ideas of deep learn-
ing technologies and successful rea-sons for image denoising. To better show the
robustness of deep learning denoising, the performance of deep learning for im-
age denoising is shown. The potential chal-lenges and directions of deep learning
technologies for image denoising in the future are also offered in this paper.

The remainder of this paper is organized as follows. Section 2 overviews of
typical deep learning methods. Section 3 provides deep learning technologies for
image de-noising. Section 4 points out some potential research directions. Section
6 presents the conclusions of this paper.

2 Typical deep network

Nowadays, the most widely used model is trained with end-to-end in a supervised
fashion, which is easy and simple to implement to train models. The popular
network architecture is CNNs (ResNet). This network is widely used to deal with
applications of image processing and obtain enormous success. The following
sections will show the popular deep learning technology, discuss the merits and
differences of the meth-od in Section 2.

2.1 ResNet

Deep CNNs have result in a lot of breakthroughs for image recognition. Espe-
cially, deep network plays an important role on image classification [30]. Many
other visual recognition applications are beneficial from deep networks. However,
deeper network can have vanishing/exploding gradients [30]. This problem has
been effectively solved by normalized initialization [33], which makes the network
converge. When this network starts converging, performance of the network gets
degraded. For exam-ple, the depth of this network are increased, the errors in the
training model are in-creasing. The problem is effectively addressed by ResNet
[15]. The ideas of ResNet are that outputs of each two layers and their inputs
are added as the new input. ResNet include many blocks and the block is shown
in Fig.1, where x and f , respectively, denote input and activation function.
A residual block is obtained by f(x) + x . The ResNet is popular based on
the following reasons. First, ResNet is deep rather than width, which effectively
controls the number of parameters and overcomes the overfitting problem. Sec-
ond, it uses less pooling layers and more downsampling operations to improve
transmission efficiency. Third, it uses BN and average pooling for regularization,
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which accelerate the speed of training model. Finally, it uses 3 × 3 filters of each
convolutional layer to train model, which is faster than using the combination
of 3 × 3 and 1 × 1 filters. As a result, ResNest takes the first place in ILSVRC
2015 and reduces 3.57% error on the ImageNet test set.

In addition, deformation networks of Residual network are popular and have
been widely used in image classification, image denoising [41] and image resolu-
tion [31].

Weight layer  

Weight layer 

Relu

x

Relu

X

identity
F(x)

F(x)+x

Fig. 1. Residual network: a building block

3 Image Denoising

Image denoising is topic applications for image processing. We take image de-
noising as an example to show the performance and principle for deep learning
tech-nologies in image processing applications.

The aim of image denoising is to obtain clean image x from a noisy image y

which is explained by y = x + n. n denotes the additive white Gaussian noise
(AWGN) with variance σ2 . From the machine learning knowledge, we know that
the image prior is an important for image denoising. In the past ten years, a lot of
methods are proposed for model with image priors, such as Markov random filed
(MRF) method [19], BM3D [9], NCSR [10] and NSS [6]. Although these methods
perform well for image denoising, they have two drawbacks. First, these methods
need to optimize, which results in increasing computational cost. Second, these
methods are non-convex, which need manual settings to improve performance.
To address the problems, some discriminative learning schemes were proposed.
A trainable nonlinear reaction diffusion method was proposed and used to learn
image prior [26]. A cascade of shrinkage fields fuse the random field-based model
and half-quadratic algorithm into a single architecture [46]. Despite methods
improve the performances for image denoising, they are limited to the specified
forms of prior. Another shortcoming is that these methods cant use a model to
deal with blind image denoising.
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Deep learning technologies can effectively deal with problems above. And
deep learning technologies are chosen for image denoising based on the following
three-fold. First, they have deep architecture, which can learn more extractions.
Second, BN and ReLu are added into deep architectures, which can accelerate
the training speed. Third, networks of deep learning methods can run on GPU,
which can train more samples and improve the efficiency. The proposed DnCNN
[45] uses BN and ResNet to perform image denoising. This network not only
deals with blind image denoising, but also addresses image super-resolution task
and JPEG image deblocking. Its architecture is as shown in Fig. 2. Specifically, it
obtains the residual image from the model and it needs to use y = x+n to obtain
clean image when it is in the test phase. It obtained PSNR of 29.13, which is
higher than the state-of-the-art BM3D method of 28.57 for BSD68 dataset with
σ = 25.

Fig. 2. The architecture of DnCNN

Fig. 3. Results of CBM3D and FFDNet for color image denoising (a)Noisy(σ=35)
(b)CBM3D(29.90dB) (c)FFDNet(30.51dB)

FFDNet [46] uses noise level map and noisy image as input to deal with
different noise levels. This method exploits a single model to deal with multi-
ple noise levels. It is also faster than BM3D on GPU and CPU. As shown in
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Fig.3, performance of FFDNet outperforms the CBM3D [19] method in image
denoising. IRCNN [47] fuses the model-based optimization method and CNN to
address image denoising problem, which can deal with different inverse problems
and multiple tasks with one single mode. In addition, it adds dilated convolution
into network, which improves the per-formance for denoising. Its architecture is
shown as Fig. 4.

Fig. 4. The architecture of IRCNN

In addition, many other methods also obtain well performance for image
denoising. For example, fusion of the dilated convolution and ResNet is used for
image denoising [37]. It is a good choice for combing disparate sources of experts
for image denosing [8]. Universal denoising networks [22] for image denoising and
deep CNN denoiser prior to eliminate multicative noise [34] are also effective for
image denoising. As shown in Table 1, deep learning methods are superior to the
converntional methods. And the DnCNN method obtains excellent performance
for image denoising.

Table 1. Comparisons of different methods with σ = 25 for image denoising.

Methods PSNR Dataset

BM3D [9] 28.57 BSD68

WNNM [14] 28.83 BSD68

TNRD [7] 28.92 BSD68

DnCNN [45] 29.23 BSD68

FFDNet [46] 29.19 BSD68

IRCNN [47] 29.15 BSD68

DDRN [37] 29.18 BSD68
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4 Research directions

4.1 The challenges of deep learning technologies in image denoising

According to existing researches, deep learning technologies achieve promising
results in image denoising. However, these technologies also suffer from some
challenges as follows. (1) Current deep learning denoising methods only deal with
AWGN, which are not effective for real noisy images, such as low light images.
(2) They cant use a model to deal with all the low level vision tasks, such as
image denoising, image super-resolution, image blurring and image deblocking.
(3) They cant use a model to address the blind Gaussian noise.

4.2 Some potential directions of deep learning technologies for

image denoising

According to the previous researches, deep learning technologies have the follow-
ing changes for image denoising application above. First, deep learning technolo-
gies design different network architectures to deal with tasks above. Second, they
can fuse the optimization and discrimination methods. Third, they can use mul-
tiple tasks to design the network. Fourth, they can change the input of the neural
networks.

5 Conclusion

This paper first comprehensively introduces the development of deep learning
technologies on image processing applications. And then shows the implementa-
tions of typical CNNs. After that, image denoising is illustrated in detail, which
concludes the differences and ideas of different methods for image denoising in
real world. Finally, this paper shows the challenges of deep learning methods for
image processing applications and offers solutions. This review offers important
cues on deep learning technologies for image processing applications. We believe
that this paper could pro-vide researchers with a useful guideline working in the
related fields, especially for the beginners worked in deep-learning.
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